La Microbiología: Un Puente entre las Ciencias Biológicas
En el terreno de las necesidades urgentes, la metodología existente ha permitido la rápida identificación y caracterización del virus de la inmunodeficiencia humana, lo que se está traduciendo en una intensa y racional búsqueda de procedimientos para prevenir y eliminar la inesperada epidemia del SIDA.
En años recientes han sido descubiertos dos nuevos tipos de entidades infectivas, subvirásicas:T.O. Diener describió en 1967 la existencia de ARN desnudos infectivos en plantas, a los que llamó viroides, y en 1981 Prusiner puso de manifiesto que determinadas enfermedades de mamíferos se deben a partículas proteicas aparentemente desprovistas de material genético, a las que bautizó como priones.
Control de lectura n° 3: Relaciones entre la Microbiología y otras ciencias biológicas
El auge de la microbiología desde finales del siglo XIX se plasmó, entre otras cosas, en el aislamiento de gran variedad de cepas silvestres de microorganismos, lo que suministró un enorme volumen de nuevo material biológico sobre el que trabajar, aplicándose una serie de enfoques que eran ya habituales en las ciencias naturales más antiguas; así, había que crear un marco taxonómico (con sus normas de nomenclatura) para encuadrar a los organismos recién descubiertos, era factible desarrollar trabajos sobre morfología y fisiología comparadas, sobre variabilidad y herencia, evolución, ecología, etc. De este modo la joven Microbiología fue objeto, en pocos años, de la utilización, a un ritmo acelerado, de los métodos taxonómicos y experimentales que habían ido surgiendo y madurando desde el siglo XVIII en los ámbitos de la “Historia Natural” clásica.
Aunque nos referiremos en otro apartado a los avances de Taxonomía Microbiana, vale la pena reseñar aquí los esfuerzos tempranos para lograr una clasificación bacteriana por parte de Cohn (1875) y Migula (1894), que sustentaban su concepto de especie predominantemente sobre caracteres morfológicos. Pero hacia 1900 era evidente la arbitrariedad e insuficiencia de este tipo de clasificaciones, de modo que los intentos posteriores hicieron uso de caracteres bioquímicos(Orma Jensen, 1909), o de una mezcla de rasgos morfológicos, bioquímicos, patogénicos y de tinción (Buchanan, 1915). El sistema de taxonomía bacteriana adquirió un nuevo impulso a partir de la 1ª edición del “Bergey’s Manual of Determinative Bacteriology” (1923), y de las propuestas de Kluyver y van Niel (“Prospects for a natural system of classification of bacteria”, 1936). En cuanto a la nomenclatura, no fue hasta 1958 en que cuajó un Código Internacional de Nomenclatura Bacteriológica, aunque ya se venía aplicando desde hacía tiempo el procedimiento tipológico para los microorganismos, con criterios similares a los de la Zoología y la Botánica.
El establecimiento de relaciones taxonómicas precisó el recurso a métodos cada vez más amplios y afinados de análisis genético, estructural o fisiológico. En un apartado anterior ya vimos las conexiones tempranas entre la Bioquímica y la Microbiología a propósito del descubrimiento de la base enzimática de las fermentaciones, lo cual abrió el camino para dilucidar el metabolismo energético microbiano, y para demostrar su similitud química con rutas metabólicas de organismos superiores. Otro paso importante en la percepción de la unidad bioquímica del mundo vivo deriva del descubrimiento de las vitaminas(término acuñado por Funk en 1911), al establecerse que determinados factores de crecimiento requeridos por algunos microorganismos eran químicamente similares a las vitaminas necesarias en la dieta de los animales, y que este tipo de compuestos representa precursores biosintéticos de coenzimas del metabolismo celular. Así pues, este tipo de investigaciones sentó claramente la idea de la unidad química de los seres vivos, independientemente de su encuadre taxonómico, y encauzó una buena parte de los trabajos bioquímicos hacia los microorganismos, dadas sus cualidades de facilidad de manejo y cultivo en laboratorio.
En cuanto a las conexiones de la Microbiología con la Genética, ya Beijerink, en 1900, tras analizar la teoría de la mutación de De Vries, había predicho que los microorganismos podrían convertirse en objetos de investigación más adecuados que los sistemas animales o vegetales. Pero las primeras conexiones entre ambas ciencias arrancan de la necesidad que hubo, a principios del siglo XX, de determinar la sexualidad de los hongos con fines taxonómicos. En 1905 Maire demostró la existencia de meiosis en la formación de ascosporas, y Claussen (1907) evidenció fusión de núcleos en Ascomicetos, mientras que Kniepp, hacia finales de los años 30 había recogido un gran volumen de información sobre procesos sexuales en Basidiomicetos. El sueco Lindegren (1936) realiza las primeras cartografías genéticas en cromosomas de Neurospora, durante su estancia en el laboratorio californiano de Morgan; este último, propugnador de la “teoría de los genes” (1926), confiaba desde hacía años en ampliar sus éxitos, logrados en Drosophila, hacia el estudio de la genética microbiana. En 1941, otros dos discípulos de Morgan, Beadle y Tatum, aislan mutantes auxotróficos de Neurospora, con lo que se inicia el estudio de la base bioquímica de la herencia, y convierten a este hongo en una valiosa herramienta de trabajo en esta línea de investigación.
Las estrategias diseñadas por Beadle y Tatum fueron aplicadas por Luria y Delbrück (1943) a cultivos bacterianos, investigando la aparición de mutaciones espontáneas resistentes a fagos o estreptomicina. La conexión de estos experimentos con las observaciones previas de Griffith (1928) sobre la transformación del neumococo, llevó a Avery y colaboradores (1944) a demostrar que el “principio transformante” portador de la información genética es el ADN. En 1949 Erwin Chargaff de muestra bioquímicamente la transmisión genética mediante ADN en Escherichia coli, y en 1952 Alfred Hershey y Martha Chase, en experimentos con componentes marcados de fagos, ponen un elegante colofón a la confirmación de la función del ADN, con lo que se derribaba el antiguo y asentado “paradigma de las proteínas” que hasta mediados de siglo intentaba explicar la base de la herencia. De esta forma, la Microbiología experimental se sitúa en pleno centro del nacimiento de la Genética molecular, de la mano de los avances paralelos en Bioquímica (análisis por rayos X de la estructura del ADN debido a Maurice Wilkins y Rosalind Franklin, modelo de Watson y Crick de la doble hélice del ADN, etc.), dando origen esta confluencia a lo que se ha llamado la “Edad de Oro” de la Biología Molecular.